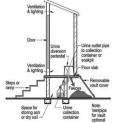
Alternative Sanitation in Protracted Emergencies

Molly Patrick¹, Jennifer Murphy², Patricia Akers², Travis Brown², Yegerem Tsige³, Ahmed Adow⁴, Mohammed Abdirashid⁴, David Githiri³, Vincent Hill² and Thomas Handzel¹ ¹CDC Center for Global Health, ²CDC National Center for Emerging and Zoonotic Infectious Diseases, ³United Nations High Commissioner for Refugees, ⁴Norwegian Refugee Council


Background and Rationale

Alternative Sanitation in Emergencies

- There is an increasing need for sanitation alternatives in humanitarian emergencies, which often occur in areas with difficult soil/ground conditions, flooding, or lack of space.
- In these settings, traditional, below-ground sanitation systems, such as pit latrines, may be technically and financially impractical

Urine-diversion dry toilets (UDDT)

- UDDTs are an above-ground sanitation system designed for dry excreta management
- Urine diverted at squat plate, storage vault(s) inactivate waste over 6-12month period

Study Location

Hiloweyn Camp, Dollo Ado, Ethiopia

- Established 2011
- Somali refugees
- Official estimates (2014): ~7,900HHs
- Rocky soils and localized flood-risk

UDDT Program (~1,000 UDDTs; 1,800HHs)

- 2012-2013: Single-family UDDT (Phase 1 pilot; n=140)
- 2014: Shared-family UDDT (Phase 2-3 scale-up; n=765)
- 2015: Shared-family UDDT (Phase 4; n=65)

Objectives

Given scale-up of UDDT program in Hiloweyn, objectives were to:

- Measure the acceptability of UDDTs over time
- Measure the performance of the UDDTs over time
- > The WHO guideline values for use of treated feces in agriculture [<1 viable helminth (i.e., *Ascaris*) ovum and <1000 E. coli per gram total solids] used as conservative performance measure
- > Key environmental parameters associated with microbiological inactivation tested (temperature, moisture content. pH)

Acceptability

Objectives:

- Determine if adoption of UDDTs changes over time • Determine if UDDTS are consistently and correctly used and by whom
- Determine if attitudes and preferences of UDDTs are more positive than for other forms of sanitation available
- Determine the factors contributing to satisfaction with sanitation system among users and non-users of UDDTs

Methods:

- Two, cross-sectional surveys, 18-months apart
- Sample size: 420 households • Stratified sampling design from Phase 1-3 UDDTs and
- from latrine users (4 groups)
- Simple random sampling of households Questionnaire: demographics, sanitation practices, sanitation preferences and UDDT observation
- Wald chi-square (p≤0.05), multivariable logistic regression modelling

Results:

• Surveyed HHs: 397 HH baseline; 414 endline

UDDT Use and Condition:

	Percent (95% Cl)		
Variable	Baseline (n=285)	Endline (n=303)	р
Reported current use (past 24 hours)	98.2 (96.7-99.8)	96.7 (94.7-98.7)	0.235
Reported consistent use (every day)	88.8 (85.1-92.5)	93.4 (90.6-96.2)	0.048
Add ash after every use	85.3 (81.1-89.4)	97.0 (95.1-98.9)	<0.0001
Presence of ash bucket	97.9 (96.2-99.6)	91.1 (87.9-94.3)	0.0003
Ash in the bucket	81.4 (76.9-86.0)	67.0 (61.7-72.3)	<.0001
No foreign objects in urine pipe	77.2 (72.3-82.1)	88.4 (84.8-92.1)	0.0003
No wet waste in active vault	58.6 (52.8-64.3)	73.3 (68.2-78.3)	0.0002

- Correct and consistent use high at both surveys
- However, at least one non-user per HH: 64.9% to 74.6% (p=0.012) from baseline to endline (*child < 5* vears)
- Cleanliness and structural indicators improved from baseline to endline

Satisfaction with Sanitation Type:

Reported Satisfaction			
	Baseline	Endline	
Latrine users	(n=107)	(n=108)	
Primary Latrine Users	66.4 (57.3-75.5)	88.9 (82.9-94.9)	
UDDT users	(n=285)	(n=303)	
	(2 9 (57 2 69 4)	07.0 (05.1.09.0)	

- All UDDT Users 62.8 (57.2-68.4) 97.0 (95.1-98.9) <0.000 No difference between UDDT and latrine satisfaction a either survey(p=0.28)
- 88.9% (95% CI 84.9-93.0) of single-family UDDT users reporting satisfaction vs. 75.2% (95% CI 70.7-79.7) of shared UDDT users (only significant at baseline)

Factors Associated with Satisfaction (UDDT):

	T OUUS Kaulo	-
Previous sanitation type in Somalia		
Previously used pit latrine vs pour-flush (ref)	4.158	
Previously used field vs pour- flush (ref)	2.411	
Years in the camp (Increase in satisfaction per year)	2.261	
Shared (ref) vs not	1.762	Г
Time of use of UDDT (increase in satisfaction per year)	1.713	
Clean (ref) vs unclean	2.819	Г

• Years in the camp and cleanliness highly associated with satisfaction

Performance- Baseline

- Sampling from single-family UDDT (n=21) Baseline #1: 6 closed vaults (8-months storage) + 4
- active vaults
- Baseline #2: 15 closed vaults (1.3 years storage)

Physical/Chemical Parameters

- Temperature: Range 31-34 °C
- vault 12%, closed vault average 1-3%
- E. coli: not measured baseline #1; 70% (n=10) met WHO guideline at baseline #2
- Ascaris Viability: No viable or non-viable Ascaris in baseline #1 (active or closed vaults); 8 of 15 had only non-viable Ascaris detected (very low levels)

Interpretation:

Extremely low levels of *Ascaris* (viable or non-viable) prevented use of this approach to assess efficacy of inactivation over time \rightarrow Longitudinal Study developed

Longitudinal Study

Methods:

Sampling from shared-family UDDT (n=20)

- "Tea bags" (20 μm mesh) prepared (Jensen 2009)
- Ascaris Bag: Waste + Ascaris ova (for Ascaris viability) • Indicator Bag: Waste only (E. coli and environmental
- parameters) One bag tested immediately (t=0); three bag embedded into the
- center of each UDDT (Figure) • Testing at 6, 9, and 12-months

Results:

Physical/Chemical Parameters

- Temperature: Average temperature ranged from 32-36°C (max:
- 41°C) Moisture Content: Average moisture content decreased from
- 9% to 3% from 0 to 12 months (max: 20%)

• pH: Average pH constant at ~9 (max: 10.9)

- **Microbial Parameters** • E. coli: UDDTs that met the WHO guideline increased from 30% to 95% from 0 to 12 months
- Ascaris Viability: After 6-months of storage, there was a >2.8log10 reduction (>99.8%) in Ascaris viability

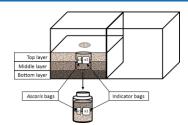
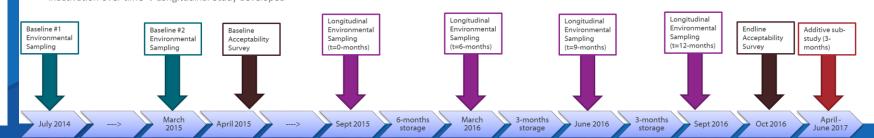



Figure. Diagram of sampling location within UDDT for longitudinal study

Additive Sub-Study

- UDDT waste treated with the 0.5%. 2%. and 5% (w/w) concentrations of commercially available hydrated lime
- Moisture content set at 20%; pH > 12 [0.5% pH ~8 by 1week. 2% and 5% remained at pH >12]
- E. coli: 0.5%, 2%, and 5% lime treatments met the WHO guideline immediately (t=0)
- Ascaris Viability: 2% and 5% treatment: >2.7 log10 reduction after 1 week of storage; 0.5% treatment: >2.9 log 10 reduction after 4 weeks of storage
- Control: >2.4 log10 reduction after 6 weeks of storage

Methods:

- **Results:**

- Moisture Content: Average moisture content active pH: Average pH constant at ~9
- Microbial Parameters

6.29	0.0121		
8.48	0.0036		
30.877	< 0.0001		
4.28	0.0385		
9.0576	0.0026		
17.07	<0.0001		
e et e tre el contelle			

Conclusions

- Adoption and current, consistent and correct use of the UDDTs was high (increased with time of use)
- UDDT users not more or less satisfied than latrine users
- Sanitation services generally well managed in the camp Hot, extremely dry environment in Hiloweyn likely representing an ideal location for a desiccation technology
- Overall, UDDTs were successful in microbial inactivation over a 12-month storage period (not all met guidelines)
- Appropriate precautions (e.g., PPE) needed for waste handling after 12-month storage and at secondary storage site location (lime at 2-5% if feasible and safety precautions can be ensured)

Recommendations

- Additional research in 1) different cultural settings, 2) different environmental conditions (e.g., more temperate and humid environments), and 3) earlier in emergency phase
- Explore modifications to enable child < 5 years to use
- Additional experiments on lime additive use under range of environmental conditions (e.g. higher moisture content)

Lessons Learned

- KAP or other sanitation-specific surveys to understand previous practices may assist with targeted implementation strategies for different demographic groups (e.g. previous sanitation access)
- Programming needed to allocate sufficient resources to educational sessions to emphasize consistent cleaning and correct use practices early in the introduction of UDDTs (+ provision of cleaning kits to HHs)
- Time of use significantly impacts satisfaction level of UDDTs, so may be more appropriate for protracted emergencies vs acute phase
- UDDTs may meet WHO guideline for reuse in hot, arid environments, after 12-months storage
- Promoting conditions which desiccate stored waste (e.g. additive use) and secondary treatment [pH (≥12)] may help improve UDDT performance
- Strong management and oversight required such that proper use of the UDDTs is maximized (e.g., to prevent liquid from entering the waste vault) and safe handling and disposal can be ensured

Project Partners

