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Forecasting point-of-consumption chlorine residual in refugee
settlements using ensembles of artificial neural networks
Michael De Santi1, Usman T. Khan1, Matthew Arnold2, Jean-François Fesselet 3 and Syed Imran Ali 1,2,3✉

Waterborne illnesses are a leading health concern in refugee and internally displaced person (IDP) settlements where waterborne
pathogens often spread through household recontamination of stored water. Ensuring sufficient chlorine residual is important for
protecting drinking water against recontamination and ensuring water remains safe up to the point-of-consumption. We used
ensembles of artificial neural networks (ANNs) to probabilistically forecast the point-of-consumption free residual chlorine (FRC)
concentration and to develop point-of-distribution FRC targets based on the risk of insufficient FRC at the point-of consumption.
We built ANN ensemble models using data from three refugee settlements and found that the risk-based FRC targets generated by
the ensemble models were consistent with an empirical water safety evaluation, indicating that the models accurately predicted
the risk of low point-of-consumption FRC despite all ensemble forecasts being underdispersed even after post-processing. This
demonstrates the usefulness of ANN ensembles for generating risk-based point-of-distribution FRC targets to ensure safe drinking
water in humanitarian operations.
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INTRODUCTION
Waterborne diseases are a leading cause of morbidity and
mortality in refugee and internally displaced person (IDP)
settlements, so providing safe drinking water is critical for
ensuring the health of displaced persons during humanitarian
responses1–4. Recontamination of previously safe drinking water
remains a major challenge in these settlements, having been
identified as contributing factor in outbreaks of cholera, hepatitis
E, and shigellosis in refugee and IDP settlements in Kenya5,6,
Malawi7, Sudan8, South Sudan9,10, and Uganda11,12. Residual
chlorine protects against household recontamination by inactivat-
ing waterborne pathogens as they are introduced into stored
drinking water. According to globally used guidelines and past
studies, this requires a free residual chlorine (FRC) concentration of
at least 0.2 mg/L to be maintained up to the point-of-
consumption13–18. Current humanitarian drinking water quality
guidelines, such as the sector-standard Sphere Handbook, do not
ensure sufficient chlorine residual at the point-of-consumption as
they fail to account for FRC decay during the post-distribution
period, which begins when treated water leaves the central water
distribution point (tap stand) and ends at the point-of-
consumption. Thus, the post-distribution period includes collec-
tion, transport, and household storage, as depicted in Fig. 1, which
shows the post-distribution period in the context of the overall
water treatment and distribution system for the sites included in
this study.
To ensure that there will be adequate chlorine residual

throughout the post-distribution period, water system operators
must select a chlorine dose during treatment for the point-of-
distribution that provides 0.2 mg/L at the point-of-consumption
(refer to Fig. 1 for a summary of water treatment and distribution
infrastructure for the sites included in this study). To achieve this,
they need models that accurately predict the point-of-
consumption FRC concentration using data available at water
distribution points. Since post-distribution FRC decay is impacted

by a number of quantifiable and unquantifiable factors, ranging
from other water quality parameters to contaminants introduced
through user interaction with water, modelling approaches must
also account for the high degree of variability and uncertainty
when modelling post-distribution FRC decay. Past studies have
used numerical modelling based on fundamental chemical rate
relationships to generate overall empirical kinetic models of post-
distribution FRC decay for multiple refugee settlements that
predict point-of-consumption FRC19. This process-based model-
ling approach accounted for uncertainty in post-distribution FRC
decay by calibrating the rate and order of chlorine decay based on
observed data and by implementing a confidence region
estimation of decay parameters. However, these models only
produced point predictions of household FRC that cannot quantify
the model uncertainty. Furthermore, these process-based models
only utilized FRC and time as explanatory variables, and cannot
directly incorporate other water quality parameters (e.g., turbidity),
which may contribute to chlorine decay.
In this study we developed ensembles of artificial neural

networks (ANNs) to produce probabilistic forecasts of point-of-
consumption FRC using data collected from the point-of distribu-
tion as an alternative to process-based modelling of FRC decay.
While ANNs have not previously been used for modelling post-
distribution FRC, they have been demonstrated to be an effective
alternative to process-based models for predicting FRC in piped
water distribution systems20–23. As a data-driven model, ANNs
learn the underlying behaviour from the data instead of assuming
the behaviour a priori, which is particularly beneficial for
modelling post-distribution FRC where the decay behaviour is
not well understood. ANNs can also be trained on data
representing a wide range of operating conditions and can be
retrained easily with new data, unlike process-based models,
which require decay parameters to be calibrated to a single set of
conditions22,23. ANNs are also effective even when only using data
collected through routine monitoring21,24, which is particularly
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beneficial in humanitarian settings where detailed lab-based
water quality evaluations may not be available25. In grouping
multiple ANNs into an ensemble, we are able to quantify model
uncertainty by combining the predictions of multiple ANNs into a
probabilistic forecast26,27, providing an important improvement in
contrast to past, deterministic, attempts to model post-
distribution FRC decay. Since ensemble models, including
ensembles of ANNs, often produce underdispersed forecasts
where the spread of the ensemble predictions is less than the
spread of the observed data26,28, we also used kernel dressing to
post-process the ensemble forecasts to obtain a better match
between the forecasted and observed distributions. While this
type of post-processing has been used in a variety of contexts for
physical models, especially atmospheric models, our study
presents an investigation into the effectiveness of post-
processing for improving underdispersion of ANN ensemble
forecasts of FRC in drinking water.
In developing these ANN ensemble models, our study had two

objectives. First, we sought to evaluate the performance of raw
and post-processed ANN ensembles for forecasting post-
distribution FRC concentrations. Second, we sought to use these
models to generate FRC targets for public water distribution
points in refugee settlements based on the risk of having
insufficient FRC at the point-of consumption while also quantify-
ing model uncertainty for water system operators. We generated
the ANN ensembles using four datasets from three refugee
settlements in South Sudan, Jordan, and Rwanda (two separate
datasets were obtained in Jordan, one from 2014 and one from
2015). For each site, we used two input variable combinations
using data collected from the point-of-distribution (refer to Fig. 1):
the first (IV1), included only point-of-distribution FRC and the
elapsed time of collection, transport, and storage between when
water is obtained from the central distribution point and the
point-of-consumption, which represents the minimum amount of
water quality data that would be reliably available in humanitarian
response. The second variable combination (IV2) included all
water quality variables recommended for routine monitoring in
humanitarian response: point-of-distribution FRC, water tempera-
ture, electrical conductivity (EC), turbidity, and pH, as well as
elapsed time between the time of collection at the water
distribution point and the point-of-consumption29–31. The data-
driven approach taken in this study presents an important step in
prioritizing evidence-based solutions for public health engineering
in humanitarian response, as well as shifting the paradigm away
from searching for a “perfect” model and towards communicating
model uncertainty.

RESULTS
Ensemble model performance
Table 1 summarizes the performance of both the raw and post-
processed ensembles for each variable combination at each site.
To prioritize model performance in an operationally acceptable
range, we removed observations with water quality parameters
outside of the acceptable ranges identified in humanitarian
drinking water guidelines as these may represent either atypical
values or measurement errors. Specifically, observations were
removed if FRC was greater than 2mg/L, if turbidity was greater
than 5 NTU, or if pH was less than 6 or greater than 830–32. From
Table 1, the percent capture of all models is below 100%, ranging
from 27 to 65% for the overall dataset and from 0 to 58% for
observations with point-of-consumption FRC below 0.2 mg/L,
indicating underdispersion, even after post-processing. Fig. 2,
which shows the confidence interval (CI) reliability diagram for
each site for the raw and post-processed ensembles, confirms this,
showing that the percent capture for each ensemble CI fell below
the 1:1 line, indicating that at all CI’s the models captured less
than the optimal percentage of observations, another indication
that the forecasts were underdispersed. While the post-processed
forecasts were underdispersed, post-processing improves both
the dispersion and reliability of the ensembles. The improved
dispersion is seen in the higher percentage of values captured,
with all models having equal or greater percent capture after post-
processing. Furthermore, post-processing improved the CI relia-
bility score for both the overall dataset and for observations with
point-of-consumption FRC below 0.2 mg/L for all sites except
Rwanda. Fig. 2 shows that this improvement was primarily at the
very high ensemble CIs (90–99% CI), and that post-processing did
not substantially impact percent capture for the lower ensemble
CIs. The impact of post-processing on the Continuous Ranked
Probability Score (CRPS), which measures the forecast sharpness,
reliability, and uncertainty, was less consistent, with the South
Sudan and Jordan (2014) models showing improved CRPS with
post-processing, and the Jordan (2015) and Rwanda models
showing a decrease. This is likely because post-processing
improves the underdispersion, which improves the reliability
component of CRPS, but also widens the forecast range which
produces a worse score for the sharpness component of CRPS.
The ensemble models using the larger IV2 input variable

combination typically had better dispersion and reliability, except
in South Sudan where the IV1 input variable combination
produced lower percent capture, but better reliability as shown
in Table 1. Figure 2 also shows that for all sites other than South
Sudan, the models using the IV2 variable combination produced
forecasts with better capture across multiple CIs, leading to a

Fig. 1 Post-distribution period shown in context of overall water supply system for typical refugee or IDP settlement. Water obtained
from ground or surface water is centrally treated then conveyed via piped distribution system to the tap stand (point-of-distribution). The
post-distribution period begins when water is collected from the tap stand and continues as it is transported to the household and then
stored until use (point-of-consumption).
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substantial improvement in reliability that is reflected in the CI
reliability scores documented in Table 1.
The following sections provide the modelling results for the

post-processed ensembles for each site and variable combination.
Only post-processed results are shown in this section as the post-
processing consistently provided better performance. The raw
ensemble results are included in Supplementary Figs 1–4 in the
Supplementary Information.

South Sudan
Figure 3 shows the observed and post-processed ensemble
forecasts of point-of-consumption FRC against the IV1 and IV2
input variables for South Sudan. The ensemble forecasts generally
follow the same trends as the observations, though there are
several observations lying outside of the ensemble forecast range,
confirming that the ensembles are underdispersed. The ensem-
bles using the IV2 input variable combination produced much
wider forecasts, which explains the higher percent capture for the
IV2 models documented in Table 1.
The clearest trend between the observed and forecasted point-

of-consumption FRC and the input variables shown in Fig. 3 was
with the point-of-distribution FRC. There was very little evidence
of a trend between the elapsed time and the point-of-
consumption FRC. Figure 3 also shows negative trends between
the forecasted and observed point-of-consumption FRC and water
temperature and turbidity. The trend between point-of-
consumption FRC and EC is less clear as at low conductivities;
there appears to be a positive trend, but at high conductivities
there appears to be a negative trend. Finally, there was not a
strong trend between pH and the point-of-consumption FRC.

Jordan (2014)
Figure 4 shows the Jordan (2014) forecast-observation pairs
against the IV1 and IV2 input variables for the post-processed
ensemble forecasts. The ensembles using the IV1 input variable
combination produced substantially narrower forecasts, especially
in regions of the output space where there is a large density of
observations, producing behaviour resembling that of a linear
regression where the ensemble predictions regress to the mean in
locations where there is a high density of data. By contrast, the
ensemble models using the IV2 input variable combination

produced much wider forecasts, leading to the better percent
capture documented in Table 1.
As in South Sudan, the forecast point-of-consumption FRC for

both input variable combinations followed similar trends as the
observed data, with the clearest trend between input and output
variables between point-of-consumption FRC and point-of-
distribution FRC. There was little evidence of a trend between
elapsed time and observed or forecasted point-of-consumption
FRC. There were also clear negative trends between the observed
and forecasted point-of-consumption FRC concentration and EC,
water temperature, and turbidity, indicating that as the values of
these water quality parameters increase, point-of consumption
FRC decreases. There was not a strong trend observed with pH.

Jordan (2015)
Figure 5 shows the Jordan (2015) forecast-observation pairs
against the IV1 and IV2 input variables for the post-processed
ensembles forecasts. As with the Jordan (2014) model, the Jordan
(2015) ensembles using IV2 produce wider ensemble forecasts
than the models using IV1; however, these were not wide enough
to capture the only observation where the point-of-consumption
FRC concentration was below 0.2 mg/L, as it was a very distant
outlier. There was little observed trend between the observed
point-of-consumption FRC and the IV1 and IV2 input variables,
and the resulting forecasts showed little variability in the forecast
point-of-consumption FRC.

Rwanda
Figure 6 shows the forecast-observation pairs for Rwanda against
the IV1 and IV2 input variables for the post-processed ensemble
forecasts. As with the Jordan (2014) model, the ensemble models
using the IV1 input variable combination produce forecast
behaviour resembling a regression to the mean where the
forecast range decreases where large numbers of observations
are present. This narrowing of the forecast range resulted in no
forecasts capturing observations with point-of-consumption FRC
below 0.2 mg/L, as documented in Table 1. The models using
the IV2 input variable combination produced forecasts that
matched the spread of the observations much better, which lead
to the improved percent capture for these models documented
in Table 1.

Table 1. Ensemble verification metrics for all sites and variable combinations for raw and post-processed ensembles.

Site Input
variables

Raw/post-
processed

Percent
capture [%]

Percent capture
(FRC below 0.2mg/L [%])

CI reliability score CI reliability score
(FRC below 0.2mg/L)

CRPS

South Sudan IV1 Raw 36 45 1.58 1.15 0.26

Post-processed 44 50 1.48 1.10 0.18

IV2 Raw 47 47 1.85 1.73 0.32

Post-processed 56 58 1.76 1.64 0.20

Jordan (2014) IV1 Raw 30 10 2.65 3.66 0.30

Post-processed 37 20 2.55 3.49 0.22

IV2 Raw 60 45 1.65 2.41 0.27

Post-processed 60 45 1.63 2.41 0.19

Jordan (2015) IV1 Raw 27 0 2.40 3.85 0.11

Post-processed 27 0 2.48 3.85 0.17

IV2 Raw 33 0 2.27 3.85 0.12

Post-processed 33 0 2.15 3.85 0.15

Rwanda IV1 Raw 30 0 2.25 3.85 0.16

Post-processed 30 0 2.32 3.85 0.19

IV2 Raw 65 17 0.77 3.27 0.16

Post-processed 65 17 0.89 3.03 0.23

M. De Santi et al.

3

Published in partnership with King Fahd University of Petroleum & Minerals npj Clean Water (2021)    35 

1
2
3
4
5
6
7
8
9
0
()
:,;



From Fig. 6, we see that the forecast point-of-consumption
FRC tends to follow the same trends as the observations and
that the clearest trends were between the forecasted point-of-
consumption FRC and the point-of-distribution FRC and elapsed
time. This latter trend had not been strong at the other sites.
Furthermore, the remaining water quality variables did not
display clear trends with the forecasted point-of-consumption

FRC, despite their inclusion substantially improving model
performance.

Partial correlation analysis results
Table 2 presents the results of a partial correlation analysis that
was performed for each site to provide additional details on the

Fig. 2 Confidence interval reliability diagrams for all sites. Raw and post-processed CI reliability diagrams for all sites for both the overall
dataset (a South Sudan, c Jordan (2014), e Jordan (2015), g Rwanda) and for observations where point-of-consumption FRC is below 0.2 mg/L
(b South Sudan, d Jordan (2014), f Jordan (2015), h Rwanda). All ensembles have percent capture below the 1:1 line, indicating
underdispersion at all CI’s, though better reliability is observed for models using the IV2 input variable combination.
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trends shown between point-of-consumption FRC and the six
input variables. The partial correlation between each input
variable and the observed point-of-consumption FRC is shown
for each site and for all four datasets together (“Combined”
column in Table 2). Table 2 shows that point-of-distribution FRC
had the strongest partial correlation with point-of-consumption
FRC at all sites. The other water quality variables had mostly
consistent negative partial correlations with point-of-consumption
FRC, indicating that point-of-consumption FRC decreases as the
magnitudes of these parameters increase, with the strength
of the partial correlation varying from site to site. increase, with
the strength of the partial correlation varying from site to site.
The generally negative partial correlation, as well as the variability
of the magnitude of the partial correlation, coheres with the
trends shown visually in Figs 3–6. Additionally, the negative
correlations between FRC and water temperature and turbidity
conform with the findings of past studies of FRC decay both
within piped distribution systems and for household stored
drinking water15,33–37. The relationship between point-of-
consumption FRC and elapsed time, however, was less consistent

with half the sites having positive partial correlations between
point-of-consumption FRC and elapsed time, and the other half
having negative partial correlations.

Risk-based FRC targets
We generated point-of-distribution FRC targets for each site by
forecasting the point-of-consumption FRC for a range of point-of-
distribution FRC concentrations (from 0.2 mg/L to 2.0 mg/L). We
selected this range considering both the experience of water
system operators and point-of-distribution FRC recommendations
in drinking water quality guidelines from refugee and IDP
settlements30–32. Following this, the risk of point-of-consumption
FRC being below 0.2 mg/L was determined for each point-of-
distribution FRC concentration from the forecast cumulative
density function (cdf). We selected the FRC target as the lowest
point-of-distribution FRC concentration that produced negligible
risk. We consider negligible risk to be a 0% predicted risk of low
point-of-consumption FRC. While this risk can never truly be non-
existent, 0% predicted risk indicates that the predicted risk is too

Fig. 3 South Sudan observations and post-processed forecasts of point-of-consumption FRC. The observations and forecasts are shown
against a point-of-distribution FRC, b elapsed time, c point-of-distribution EC, d point-of-distribution water temperature, e point-of-
distribution pH, f point-of-distribution turbidity. A strong trend between point-of-consumption and point-of-distribution FRC is observed and
IV2 forecasts are much more dispersed than IV1 forecasts.
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small to be stored as a floating-point number. The use of 0%
predicted risk in this study is meant to be illustrative, and in
practice the target FRC could be selected for any level of
protection. While the below section presents the recommenda-
tions required to achieve negligible risk, we present recom-
mended targets for 5% and 15% risk thresholds in Supplementary
Table 1 in the Supplementary Information. These higher risk
thresholds may be needed in sites with high FRC decay or low
chlorine taste and odour acceptability.
We used a storage duration of 24 h for all sites and datasets

except in South Sudan where we used a storage duration of 10 h
in keeping with past studies that have shown that long storage
durations were not practiced at this site and that it is difficult to
maintain a chlorine residual over long storage durations at this site
due to high FRC decay rates that have been attributed to very hot
temperatures and poor overall water, sanitation, and hygiene
(WASH) conditions9,19. For the IV2 models, which include
additional water quality variables, we simulated two scenarios:
an “average case” scenario which used the median values of EC,
water temperature, pH, and turbidity, and a “worst-case” scenario

where we simulated water quality conditions that would be
unfavourable for maintaining a chlorine residual. From the partial
correlation analysis presented above, as well as the trends shown
in Figs 3–6, we determined that higher values for the four water
quality parameters (EC, water temperature, turbidity, and pH)
would produce the least favourable conditions, so we used the
95th percentile value observed in each dataset for the “worst case”
scenario. Thus the “worst case” scenario reflects only the values
observed during the data collection period, and do not account
for seasonal factors such as flooding or monsoon seasons that
occurred outside of the period of data collection.
The predicted risk of point-of-consumption FRC below 0.2 mg/L

for each site for all three cases (IV1, IV2 average case, IV2 worst
case) are presented in Fig. 7. To achieve negligible risk of point-of-
consumption FRC below 0.2 mg/L in South Sudan (Fig. 7a), the
recommended point-of-distribution FRC concentration ranges
from 0.70 mg/L (IV2 “worst case”) to 0.95 mg/L (IV1), with
0.75 mg/L recommended for the IV2 “average case” scenario. In
Jordan (2014) (Fig. 7b) the recommended point-of distribution FRC
using the IV1 model is 0.70 mg/L and is 1.05 mg/L for the “average

Fig. 4 Jordan (2014) observations and post-processed forecasts of point-of-consumption FRC. The observations and forecasts are shown
against a point-of-distribution FRC, b elapsed time, c point-of-distribution EC, d point-of-distribution water temperature, e point-of-
distribution pH, f point-of-distribution turbidity. IV1 forecasts show a strong regression to the mean behaviour. Strong trends between point-
of-consumption FRC and: point-of-distribution FRC, EC, and water temperature.
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case” scenario using the IV2 model. No point-of-distribution FRC
concentration was able to achieve negligible risk of point-of-
distribution FRC below 0.2 mg/L in the “worst case” scenario for
the IV2 model though there is very little change in the predicted
risk for point-of-distribution FRC concentrations between 1.75 mg/
L and 2.0 mg/L. Thus, any point-of-distribution FRC concentration
between 1.75 mg/L and 2.0 mg/L would achieve similar risk of
having point-of-consumption FRC below 0.2 mg/L. Therefore, we
recommend using the lowest FRC concentration within this range
(1.75 mg/L) for the “worst case” scenario to reduce the potential
for disinfection by-product (DBP) formation or taste and odour
concerns. In Jordan (2015) (Fig. 7c) a point-of-distribution FRC
concentration of 0.2 mg/L is recommended for the IV1 and IV2
“average case” scenarios, and 0.4 mg/L for the IV2 “worst case”
scenario. In Rwanda, (Fig. 7d) the recommended point-of-
distribution FRC concentration ranges from 0.60mg/L (IV1 and
IV2 “average case”) to 0.90 mg/L (IV2 “worst case”).
To provide additional context for the risk predictions, Figure 8

shows the forecast range at each point-of-distribution FRC
concentration for the three scenarios as well as the recorded

observations for similar storage durations (6–12 h for South Sudan,
20–28 h for all other sites). This figure shows that the ANN
ensemble forecasts reflect uncertainty well, with wider forecasts
where there are fewer observations (and hence greater uncer-
tainty), and narrower forecasts where there are more observations.
However, at all sites except Rwanda (bottom row) this leads to an
overprediction of point-of-consumption FRC at low point-of-
distribution FRC concentrations. While these forecasts are
unrealistic, they could easily be corrected with further post-
processing. Figure 8 also shows that the forecasts produced by the
ensemble models using the IV2 input variable combination
(shown in the middle column for the “average case” scenario
and in the right column for the “worst case” scenario) tended to
produce wider forecast ranges for all sites except South Sudan
(top row). Additionally, we see that the forecasts produced by the
IV2 model for the “worst-case” scenario in Jordan (2014) (Fig. 8f)
and for Rwanda (Fig. 8l) captured all of the observations with
point-of-consumption FRC below 0.2 mg/L and very effectively
reproduced the behaviour of observations with low point-of-
consumption FRC.

Fig. 5 Jordan (2015) observations and post-processed forecasts of point-of-consumption FRC. The observations and forecasts are shown
against a point-of-distribution FRC, b elapsed time, c point-of-distribution EC, d point-of-distribution water temperature, e point-of-
distribution pH, f point-of-distribution turbidity. Both IV1 and IV2 forecasts are very flat due to low overall rates of FRC decay at this site.
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DISCUSSION
The ensemble performance metrics listed in Table 1, as well as the
results shown in Figs 2–6, highlight that the forecasts produced by
the ANN ensembles were underdispersed. This problem has also
been identified when using ANN ensembles to forecast hydro-
logical variables26,27. However, these previous studies did not
implement post-processing of the ensemble forecasts. While the

post-processing implemented in this study generally improved
the ensemble reliability and dispersion, it neither lead to full
capture of the observations, nor did it substantially improve the
reliability of the ensemble forecasts. Future study should
investigate opportunities to improve the raw ensemble forecast-
ing performance, as well as alternative ensemble formation
techniques and other machine learning models to reduce the

Fig. 6 Rwanda observations and post-processed forecasts of point-of-consumption FRC. The observations and forecasts are shown against
a point-of-distribution FRC, b elapsed time, c point-of-distribution EC, d point-of-distribution water temperature, e point-of-distribution pH,
f point-of-distribution turbidity. IV2 forecasts tend to be much more dispersed, leading to better overall capture, especially of observations
with point-of-consumption FRC below 0.2 mg/L.

Table 2. Partial correlation analysis results between water quality variables and point-of-consumption FRC.

Point-of-distribution water quality variable South Sudan Jordan (2014) Jordan (2015) Rwanda Combined

FRC 0.66 0.43 0.31 0.63 0.59

Elapsed time 0.10 −0.09 0.20 −0.26 −0.01

EC −0.07 −0.34 −0.08 −0.04 −0.10

Water temperature 0.00 −0.06 −0.10 −0.13 −0.15

pH −0.10 −0.09 −0.14 0.07 −0.01

Turbidity −0.01 −0.03 0.05 −0.20 −0.04
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dependence on post-processing. Future study should also
investigate more sophisticated post-processing methods, which
have been proposed and validated in the literature28,38–40. In
particular, considering the regression-to-the-mean style behaviour
shown for some of the models, the use of mean squared error
(MSE) as the cost function for training the base learners may be
contributing to the forecast underdispersion, as this cost function
tends to reward predicting near the centre of the distribution of
observed values. Future studies should investigate alternative cost
functions and training options to avoid this type of behaviour.
The models using the IV2 input variable combination tended to

produce better dispersion and reliability than those using the IV1
input variable combination. This shows that including additional
water quality variables allowed the models to better reproduce
the observed variability and match the distribution of the
observed values of point-of-consumption FRC. This is particularly
important as all of these water quality variables can be monitored
directly in the field and are often part of routine water quality
monitoring programs in humanitarian response settings. Of the
water quality variables included in this study, water temperature
and EC had the most consistent relationship with point-of-
consumption FRC, as shown in the trends in Figs 3–6, and in the
partial correlation results (Table 2). This reflects the findings of
past studies, which show that water temperature has an important

impact on FRC decay within distribution systems as it impacts the
rate of the decay reactions35–37,41. The relationship between EC
and FRC is not as well documented as EC is a bulk indicator that
may correspond to many compounds, such as salts, metals, and
dissolved organics, and only some of these are likely to exert
chlorine demand18. However, past studies have shown that EC had
a significant effect on post-distribution FRC decay in South
Sudan9. The relationship between turbidity and point-of-
distribution FRC was less consistent, likely because turbidity is
also a bulk indicator that does not reflect any individual
compound. In some cases, turbidity-causing compounds, espe-
cially oxidizable organic material or suspended metals can exert a
large chlorine demand25,33,42, but other turbidity-causing com-
pounds, such as clays which are a common source of turbidity in
groundwater, do not exert strong chlorine demand42,43. The
weaker observed trends and partial correlation between point-of-
consumption FRC and pH are interesting as pH has been shown to
be an important factor in FRC decay35. In this study, the pH range
was rather small, (between 6 and 8), which may explain the limited
trend with pH as this neutral range is typically associated with the
highest rate of FRC decay44. Interestingly, the input variable that
displayed the weakest trends and partial correlation with point-of-
consumption FRC was elapsed time, despite FRC decay being a
time-dependent reaction. This may indicate that elapsed time is

Fig. 7 Predicted risk of insufficient point-of-consumption FRC (below 0.2mg/L). The predicted risk is shown for a South Sudan, b Jordan
(2014), c Jordan (2015), and d Rwanda. To achieve negligible risk, the ANN ensemble models recommend point-of distribution FRC between
0.65 and 0.90mg/L in South Sudan, between 0.7 and 1.75mg/L in Jordan (2014), between 0.2 and 0.4 mg/L in Jordan (2015), and between 0.60
and 0.90mg/L in Rwanda. The upper limit of the recommendation for Jordan (2014) does not ensure negligible risk, as this was never
achieved, but represents a plateau in the predicted risk of FRC below 0.2 mg/L.
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confounded with other factors, especially considering that elapsed
time tended to cluster around a few different values at each site,
(c.f., Supplementary Figs 5–12 in the Supplementary Information).
Longer storage durations include periods of overnight storage
when temperatures are cooler, and where there is less opportunity
for user interaction with the water, which may lead to a lower
overall rate of decay. Conversely, shorter storage durations tend to
reflect water collected in the morning and stored during the day
when temperatures are warmer and when water is being used

more frequently, both of which may contribute to higher rates of
FRC decay. Thus, while FRC is a time-dependent reaction, other
time-dependent factors may confound the effect of elapsed time
on post-distribution FRC. Additionally, while the inclusion of
additional water quality variables improved model performance,
we neither quantify the impact of individual water quality
variables on water quality performance, nor did we implement
any evidence-based input variable selection techniques. Future
study should focus on identifying which variables are most

Fig. 8 Forecasts used to generate risk-based FRC targets. Forecasts shown by site and scenario, South Sudan (a IV1, b IV2 “average case”,
c IV2 “worst case”), Jordan (2014) (d IV1, e IV2 “average case”, f IV2 “worst case”), Jordan (2015) (g IV1, h IV2 “average case”, i IV2 “worst case”),
and Rwanda (j IV1, k IV2 “average case”, l IV2 “worst case”).

M. De Santi et al.

10

npj Clean Water (2021)    35 Published in partnership with King Fahd University of Petroleum & Minerals



important to model performance to streamline data collection,
and in particular, should seek to clarify the influence of elapsed
time on FRC decay.
Unlike the other sites, in South Sudan, models using the IV1

combination had better reliability than those using IV2 combina-
tion. The poorer ensemble reliability exhibited for South Sudan
using the IV2 combination may be due to the nature of water
supply at this site. The South Sudan site was comprised of three
subcamps, each with their own water distributions systems. Since
chlorine decay behaviour is specific to the distribution system45,
the impact of these other water quality parameters may have
varied between the three subcamps, so a consistent behaviour for
these additional variables could not be identified during the
training of the ANN base learners. Future work should investigate
the possibility of developing individual models for each subcamp
to identify if this behaviour is observed even with distribution
system-specific models. This may be challenging with the current
dataset, however, due to the relatively small number of
observations available at each subcamp.
The risk-based FRC targets produced in this study varied

substantially from site to site, and in the case of Jordan, varied
over time as well. This highlights a key shortcoming of current
humanitarian drinking water quality guidelines: they are universal
and static, recommending the same range of point-of-
distribution FRC concentrations for all sites at all times. The
results of this research highlight that this is not effective for
ensuring adequate FRC levels at the point-of-consumption as for
all sites except Jordan (2015), the ANN ensembles predicted a
substantial risk of insufficient point-of-consumption FRC when
using the Sphere-recommended 0.2–0.5 mg/L FRC concentration
at the point-of-distribution. This is reinforced by a previous study
that used process-based models of FRC decay that also found the
Sphere recommendations would not provide sufficient FRC at
any of these sites except Jordan (2015)19. Furthermore, the
authors of the previous study identified that the Sphere
guidelines were only effective in Jordan (2015) due to very low
FRC decay rates, which resulted from low temperatures and very
good overall site hygiene. However, since the Jordan (2014)
model showed substantial risk of unsafe drinking water using the
Sphere guidelines, it is unclear if these favourable conditions
would be long-lasting.
The risk-based FRC targets generated in this study also showed

interesting relationships with the FRC targets generated in a
previous study through process-based modelling. The process-
based models recommended point-of-distribution FRC concentra-
tions to ensure 0.2 mg/L at the point-of consumption, with
1.25 mg/L recommended for South Sudan, 1.17 mg/L for Jordan
(2014), 0.5 mg/L for Jordan (2015), and 0.64 mg/L for Rwanda19.
These are largely in-line with the IV1 model recommendations,
and the IV2 “average case” scenario. Moreover, the process-based
study also included an empirical water safety evaluation using the
primary field data to assess how many dwellings had adequate
point-of-consumption FRC using the recommendations from the
process-based models. They found that, using the FRC targets
generated by the process-based models, listed above, 71% of
dwellings in South Sudan 82% of dwellings in Jordan (2014), 100%
of dwellings in Jordan (2015), and 68% of dwellings in Rwanda
had point-of consumption FRC above 0.2 mg/L19. In Jordan and
Rwanda, this coheres with the risk of point-of-consumption FRC
below 0.2 mg/L predicted by the worst-case scenario which
predicted a 17% risk of insufficient point-of-consumption FRC
for the process-based recommendation in Jordan (2014), negli-
gible risk in Jordan (2015), and 32% risk in Rwanda. This shows
that for these sites, the “worst-case” scenario for the models using
the IV2 variable combination provides very accurate predictions of
the risk of insufficient FRC.
The exception to this is South Sudan where all model scenarios

predicted negligible risk of insufficient point-of-consumption FRC

for the point-of-distribution FRC target recommended by the
process-based model. This may be due to differences in data
preparation between this study and the previous study as we
removed observations where the point-of-distribution water
quality parameters exceeded guideline values, but the previous
study did not and the South Sudan dataset had numerous
observations with large differences in FRC between distribution
and consumption where the point-of-distribution water quality
did not meet guideline values. By removing these observations to
prioritize model performance in operationally acceptable ranges,
we may have created models which were overly optimistic,
especially when compared to previous studies that did not omit
these values. Additionally, for all of these targets, the scenarios
were generated using data only from a short period of data
collection and do not represent long-term “average” or “worst
case” scenarios. However, this highlights an advantage of the ANN
modelling approach: it is very simple to retrain the models,
allowing them to adapt to potentially dynamic water quality
conditions in refugee and IDP settlements and at the same time, it
is also very simple to track a long-term “average case” and “worst
case” set of water quality conditions, if needed, for generating FRC
targets. Future studies should investigate the advantages and
drawbacks of using long and short-term datasets for both training
ANN ensembles and for generating FRC targets.
By accurately predicting the risk of insufficient FRC, the ANN

ensemble models not only provide FRC targets which can
provide better confidence for water system operators, it also
allows water system operators to balance the risk of insufficient
FRC against other concerns such as DBP formation or taste and
odour concerns, both of which increase as the chlorine residual
increases. In particular, taste and odour concerns can be
problematic as they may result in water users turning to unsafe
drinking water sources18. Attitudes towards chlorine taste and
odour tend to be both site specific and dynamic, though the
reported average chlorine taste and odour acceptability thresh-
old from studies in Bangladesh, Ethiopia, and Zambia ranges
from 1.25 to 2.0 mg/L15,46, which indicates that the “worst-case”
scenario recommendation for Jordan (2014) could cause taste
and odour concerns. Future work should seek to quantify and
link the risks of taste and odour concerns and DBP formation on
a site-by-site basis in conjunction with analytics presented in this
study to further inform the selection of an appropriate point-of-
distribution FRC target.
Operationally, a major advantage of the probabilistic approach

to generating FRC targets used in this study is that, by
communicating the predicted risk that FRC will be below
0.2 mg/L at the point-of-consumption, we allow water system
operators to balance the trade-offs between water safety risks and
DBP and taste and odour risks. Thus, the ensemble ANN approach
allows operators to select a point-of-distribution FRC concentra-
tion based on the allowable risk of low FRC at the point-of-
consumption. Furthermore, we defined low FRC using a threshold
point-of-consumption FRC concentration of 0.2 mg/L based on
humanitarian drinking water quality guidelines30–32 and on past
studies that show this is effective for protecting against
pathogenic recontamination both in piped distribution systems
and in water stored in dwellings13,15,16,47. However, operationally,
any threshold value of FRC could be used with the ensemble ANN
approach. This is especially important as many of the water quality
parameters included in this study not only impact FRC decay, but
also the disinfection effectiveness of chlorination18,47.
This study demonstrated the benefits of using a probabilistic,

ANN ensemble-based approach for modelling post-distribution
FRC and generating risk-based FRC targets. These models used
routinely collected water quality data to generate probabilistic,
evidence-based FRC targets which showed good agreement with
other studies in these settlements, while providing additional
benefits by communicating uncertainty and risk. To facilitate the
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adoption of this probabilistic approach for developing risk-based
FRC targets, the analytics presented here have been made freely
available to support water system operators in refugee and IDP
settlements through the new web-based Safe Water Optimization
Tool (https://safeh2o.app).

METHODS
Study sites and data collection
The data used for this study were obtained from a previous multi-site study
on post-distribution FRC decay collected from refugee settlements in
South Sudan, Jordan, and Rwanda19. This dataset was selected as process-
based models have been used to produce FRC targets for these sites,
which provide a useful comparison to the risk-based targets generated in
this study. Details of the data collected at these sites, as well as important
site characteristics are included in Table 3. Two datasets were collected
from Jordan: one from the summer of 2014 and one 9 months later from
the late winter of 2015. The original study treated these as two separate
datasets due to differences in environmental conditions between the two
datasets (10 °C difference in average temperature) and amount of time
between the two datasets19. To ensure a consistent comparison with the
original study, we have also treated the 2014 and 2015 data from Jordan as
two distinct datasets.
The dataset for each site includes FRC as well as other water quality

parameters, which are routinely collected in humanitarian water systems
operation including total residual chlorine, EC, water temperature,
turbidity, and pH. Data were collected using paired sampling whereby
the same unit of water was sampled at the following points along the post-
distribution water supply chain:

● From the tap at the point-of distribution
● In the container immediately after collection
● In the container immediately after transport to the dwelling
● After a follow-up period of storage in the household

This study only used the measurements at the point-of-distribution and
point-of-consumption to reflect data collection practices that are more
feasible for humanitarian operations. In preparing the dataset, observa-
tions were removed if the point-of-distribution water quality did not meet
humanitarian drinking water quality guidelines. Supplementary Table 2 in
the Supplementary Information includes the full list of data cleaning steps
that were used to prepare the data for use in the ANN models.

Ethics
The initial field work in South Sudan received exemption from full ethics
review by the Medical Director of Médecins sans Frontières (MSF)
(Operational Centre Amsterdam) as data collected was routine for the
on-going water supply intervention at the study site. For subsequent field
studies in Jordan and Rwanda, ethics approval was obtained from the
Committee for Protection of Human Subjects (CPHS) of the Institutional
Review Board at the University of California, Berkeley (CPHS Protocol
Number: 2014-05-6326). Informed consent was provided throughout all
data collection.

Input variable selection
Two input variable combinations were considered for predicting the
output variable, the point-of-consumption FRC concentration. The
variables considered are all variables that are routinely monitored in
humanitarian water system operations. The first input variable combina-
tion (IV1) included FRC at the water point-of-distribution and the elapsed
time between the measurement at the point-of-distribution and the point-
of-consumption. This input variable combination represents the minimum
number of variables that would be regularly collected under current
humanitarian drinking water quality guidelines31. Additionally, these are
the only two variables included in the process-based model developed in a
past study for these sites19, so this input variable combination allows for a
direct comparison of the ANN ensemble models with the process-based
models. The second input variable combination (IV2) included the
variables from IV1 as well as additional water quality variables measured
from the point-of-distribution (directly after water had left the water
distribution point): EC, water temperature, pH, and turbidity. These
additional variables are recommended for collection in some humanitarian
drinking water quality guidelines29–31, and as such, may also be available in Ta
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humanitarian response settings. This larger input variable set allowed us to
investigate the usefulness of additional water quality variables for
forecasting point-of-consumption FRC concentrations.

Base-learner structure and architecture
The ensemble base learners (the individual ANNs in the ensemble models)
were built as multi-layer perceptrons (MLPs) with a single hidden layer
using the Keras 2.3.0 package48 in Python v3.749. This structure was
selected because it has been shown to outperform other data-driven
models and ANN architectures for predicting FRC in piped distribution
systems20,21. The weights and biases of the base learners were optimized
to minimize mean squared error (MSE) using the Nadam algorithm with a
learning rate of 0.1. An early stopping procedure with a patience of 10
epochs was used to prevent overfitting.
The hidden layer size of the base learners was determined through an

exploratory analysis by consecutively doubling the hidden layer size until
performance decreased or ceased to improve substantially from one
iteration to the next. Based on this analysis, we selected a hidden layer
size of four hidden neurons at all sites for the models using the IV1 variable
combination for all sites. For the models using the IV2 input variable
combination, we selected a hidden layer size of 16 hidden nodes for South
Sudan and Jordan (2015), and a hidden layer size of eight hidden nodes for
Jordan (2014) and Rwanda. The full results of the exploratory analysis into
hidden layer size are included in Supplementary Figs 13–20 in the
Supplementary Information.

Data division
The full dataset for each site and variable combination was divided into
calibration and testing subsets, with the calibration subset further
subdivided into training and validation data. The testing subset was
obtained by randomly sampling 25% of the overall dataset. The same
testing subset was used for all base learners so that each base-learner’s
testing predictions could be combined into an ensemble forecast. The
training and validation data were obtained by randomly resampling from
the calibration subset, with a different combination of training and
validation data for each base learner to promote ensemble diversity. The
ratio of data from the calibration set used for training and validation,
respectively, was selected to avoid both overfitting and underfitting
through an exploratory analysis using a grid search process. In all but two
cases, we selected a validation set that was twice the size of the training
set, for an overall training-validation-testing split of 25–50–25%. The two
exceptions to this were for the Jordan (2014) model when using the IV1
input variable combination where we found that a training-validation-
testing split of 50–25–25 produced better performance, and for the Jordan
(2015) model when using the IV1 input variable combination where a
training-validation-testing split of 30–45–25 performed substantially
better. The full results of the exploratory analysis for data division are
included in Supplementary Figs 21–28 in the Supplementary Information.
Descriptive statistics for the calibration and testing datasets are included in
Supplementary Tables 3 and 4 of the Supplementary Information, and
histograms of the input and output variables are provided in Supplemen-
tary Figs 5–12 in the Supplementary Information to provide context of the
range and patterns in the data used to train the ANN base learners.

Ensemble model formation
The ensemble models in this study were used to generate probabilistic
forecasts of post-distribution FRC by combining the predictions of each
base learner into a probability density function (pdf). Thus, for each
observation of FRC at the point-of-consumption, the ensemble model
outputs a pdf representing the predicted probability of point-of-
consumption FRC concentrations. This pdf can then be used to identify
ensemble confidence intervals (CIs) for the expected point-of-consumption
FRC concentration. To ensure a good representation of the full output
space in the final pdfs, two approaches were taken to ensure ensemble
diversity. First, as discussed above, the data used to train the base-learner
ANNs was randomly sampled from the calibration set, so each ANN was
trained on a different subset of the data. Second, the initial weights and
biases were randomized for each base learner in a random-start process.
Both of these are implicit approaches to ensuring ensemble diversity as
they do not directly create diversity and instead the diversity arises
through the randomization of the training data and the weights and
biases50. The benefit of implicit approaches is that the differences between
the base learners are derived from randomness in the data50.

The ensemble size (number of base learners included in the ensemble)
was also determined through an exploratory analysis using a grid search
procedure This exploratory analysis showed that in general, performance
increased with larger ensemble sizes, but improvements in performance
plateaued at ensemble sizes ranging from 50 members to 250 members.
Based on this, a standard ensemble size of 250 members was selected for
all sites and variable combinations. The full results of the exploratory
analysis for ensemble size are included in Supplementary Figs 29–36 in the
Supplementary Information.

Ensemble post-processing
We used ensemble post-processing to attempt to improve the forecasts
generated by the raw ensembles. We used the kernel dressing method to
post-process ensemble predictions51. This method follows a two-step
process: first a kernel function is fit centred on the base-learner prediction
for each observation, then each member’s kernel is summed together to
produce the post-processed pdf, which is a non-parametric mixture
distribution function. We used a Gaussian kernel function in keeping with
past studies27,28,38,51, though the selection of the specific kernel function is
not critical28. The kernel bandwidth was defined using the best member
error method where the bandwidth for all kernels is the variance of the
absolute error of the prediction that is closest to each observation in the
calibration dataset51.

Ensemble verification and performance evaluation
We used ensemble verification metrics to evaluate the performance of the
raw and post-processed ensembles for each site and variable combination.
Ensemble verification metrics differ from traditional measures of perfor-
mance (e.g. Nash Sutcliffe Efficiency, MSE, etc.) as they assess the
performance of the probabilistic forecasts of an ensemble whereas
traditional measures typically evaluate the average performance of an
ensemble model or the predictions of a deterministic model52. Throughout
the following section, O refers to the full set of observed FRC
concentrations at the point-of-consumption and oi refers to the ith

observation, where there are I total observations. F refers to the full set of
probabilistic forecasts for point-of-consumption FRC, where Fi is the
probabilistic forecast corresponding to observation oi and fmi is the
prediction by the mth base learner in the ensemble on the ith observation.
For the following metrics, it is assumed that the predictions of each base
learner in the ensemble are sorted from low to high for each observation
such that fmi � fmþ1

i from m ¼ 0 to m ¼ M.

Percent capture
Percent capture measures the percentage of observations which are
captured within the ensemble forecast and provides a useful indication of
how well the model can reproduce the full range of observed values, and,
as such, can indicate if a model is underdispersed. For a raw ensemble
forecast, the ith observation is captured if f 0i � oi �M

i . For a post-processed
forecast, the ith observation is captured if the probability of oi in the
mixture distribution is greater than 0. While not commonly used for
ensemble verification, a similar metric has been used for evaluating other
probabilistic or possibilistic models, especially neurofuzzy networks,
referred to either as the percent capture or the percent of coverage53–56.
The percent capture was calculated both for the overall set of observations,
as well as for observations with point-of-consumption FRC below 0.2 mg/L.
The latter is a useful indicator of how well the model can predict if water
will have sufficient FRC at the point-of-consumption, which is an important
indicator of the degree of confidence we have in the risk-based targets
generated using these ensemble models.

CI reliability diagram
Reliability diagrams are visual indicators of ensemble reliability, where
reliability refers to the similarity between the observed and forecasted
probability distributions with the ideal model having all observations
plotted along the 1:1 line showing that the observed probabilities are
equal to the forecasted probabilities. These diagrams plot the observed
relative frequency of events against the forecast probability of that event,
though the reliability diagram has been adapted in past studies as the CI
reliability diagram which compares the frequency of observed values
within the corresponding CI of the ensemble. For raw ensembles, the CIs
are derived from the sorted forecasts of the base learners (for example, the
ensemble 90% CI would include all of the forecasts between f 0:05M and
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f 0:95M) and for post-processed ensembles, the CIs are calculated directly
from the probability distribution. In this study, we extended the CI
reliability diagram further by plotting the percent capture of each CI within
the ensemble against the CI level. For each ensemble model we plotted
the CI reliability for the 10–100% CI levels at 10% intervals as well as at the
95 and 99% CI. We used this to develop a numerical score for the CI
reliability diagram, which is calculated as the squared distance between
the percentage of observations captured within each CI and the ideal
percent capture in that CI. This was calculated for each CI threshold, k, from
10 to 100% in 10% increments as shown in Eq. 1.

CI Reliability Score ¼
X1

k¼0:1

k � Percent Capture in CIkð Þ2 (1)

The CI reliability score measures the horizontal distance between
the percent capture and the 1:1 line for each CI. The ideal value for this
score would be 0, indicating all points fall on the 1:1 line. The worst
possible score will depend on the number of CI’s included in the
calculation of the score; for this study the worst score is 3.9, which would
only occur if no observations were captured in any CI of the ensembles.
The CI reliability score was calculated for both the overall dataset and for
forecast-observation pairs where the observed household FRC concentra-
tion was below 0.2 mg/L.

Continuous Ranked Probability Score
The Continuous Ranked Probability Score (CRPS) is a common metric for
evaluating probabilistic forecasts that evaluates the difference between
the predicted and observed probabilities of continuous variables and is
equivalent to the mean absolute error of a deterministic forecast57,58. The
CRPS measures not only model reliability but also sharpness, which is an
indicator of how closely the ensemble predictions are clustered around the
observed values. Thus, the CRPS can be a useful measure of overdispersion
and can provide an indication if improvements in reliability are being
obtained at the expense of excess overdispersion. The CRPS is measured as
the area between the forecast cumulative distribution function (cdf) and
the observed cdf for each forecast-observation pairing58. Since each
observation is a discrete value, the observation cdf is represented with the
Heaviside function Hfx � xag, which is a stepwise function with a value of
0 for all point-of-consumption FRC concentrations below the observed
concentration and 1 for all point-of-consumption FRC concentrations
above the observed concentration. The equation for calculating the CRPS
of a single forecast-observation pair is given in Eq. 2. Note that Eq. 2 shows
the calculation of CRPS for a single forecast-observation pair. To evaluate
the ensemble models, the average CRPS, CRPS, is calculated by taking the
mean CRPS overall forecast-observation pairs.

CRPS ¼
Z 1

�1
Fi xð Þ � H x � oif gð Þ2dx (2)

For the post-processed probability distributions, we calculated CRPS
directly from Eq. 2 using numerical integration. For the raw ensemble, we
treated the forecast cdf as a stepwise continuous function with N ¼ Mþ 1
bins where each bin is bounded at two ensemble forecasts and the value
in each bin is the cumulative probability58. CRPS is calculated using gn , the
average width of bin n (average difference in FRC concentration between
forecast values m and mþ 1) and on the likelihood of the observed value
being in bin n58. Using these values, the CRPS for an ensemble can be
calculated as58:

CRPS ¼
XN

n¼1

gn½ð1� onÞp2n þ on 1� pnð Þ2� (3)

Where pn is the probability associated with each bin, pn ¼ n
N
58.

Generation of risk-based targets
To generate the risk-based FRC targets, the trained ensembles of ANNs
were used to forecast the point-of-consumption FRC for a series of point-of-
distribution FRC concentrations from 0.2 to 2mg/L in 0.05mg/L increments.
For each point-of-distribution FRC concentration, the predicted risk of
insufficient FRC was calculated from the forecast pdf as the cumulative
probability of FRC at the point-of-consumption being below 0.2mg/L. Using
this predicted risk, the target FRC concentration for the point-of-distribution
was then selected as the lowest FRC concentration at the water point-of-
distribution that provides the desired level of protection. For this study we
selected the FRC concentration that resulted in negligible risk of FRC being

below the 0.2 mg/L threshold (i.e. the lowest FRC concentration where
the predicted risk is 0), though operationally any level of protection could
be used and the risk of insufficient FRC at the point-of-consumption should
be balanced against risks associated with high FRC concentrations, such as
DBP formation and taste and odour concerns.
For comparison with the previously published results, we used a storage

duration of 10 h when generating the FRC targets for South Sudan, and
24 h for all other sites19. Since the IV2 model also requires values for EC,
water temperature, pH, and turbidity, two scenarios were considered. First,
an “average” scenario was used where the median observed value for all
other water quality parameters were selected. The second scenario
considered was a “worst-case” scenario, where we simulated a scenario
where water quality conditions were unfavourable for maintaining chlorine
residual. A partial correlation analysis, which assesses the correlation
between an input variable and the output variable while controlling for the
impacts of other input variables, was used to determine the least
favourable conditions for each input variable. The partial correlation
analysis is performed by first developing multiple linear regression
predictions of both the output variable (point-of-consumption FRC) and
the input variable of interest using the remaining input variables as the
predictors to the linear regression models and then taking the Pearson
correlation coefficient of the residuals between the two regression models.
Partial correlation was used to assess the directionality of the effect of the
additional water quality variables included in IV2 to assess whether high or
low values of these inputs would create a worst-case scenario. Once the
directionality of the impact of the different variables had been established,
the 95th or 5th percentile observed value of that variable was used at each
site to simulate the worst-case scenario.
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